sábado, 13 de agosto de 2011

Resumen de Newton Y Leibniz

Isaac Newton
Nació el 4 de enero de 1643 en Woolsthorpe, Lincolnshire, Inglaterra. A los dieciocho años ingresó en la Universidad de Cambridge para continuar sus estudios. Newton nunca asistió regularmente a sus clases, ya que su principal interés era la biblioteca. Se graduó en el Trinity Collage como un estudiante mediocre debido a su formación principalmente autodidacta, leyendo algunos de los libros más importantes de matemática y filosofía natural de la época
abordó el desarrollo del cálculo a partir de la geometría analítica desarrollando un enfoque geométrico y analítico de las derivadas matemáticas aplicadas sobre curvas definidas a través de ecuaciones.
 Los historiadores de la ciencia consideran que Newton y Leibniz  desarrollaron el cálculo independientemente, si bien la notación de Leibniz era mejor y la formulación de Newton se aplicaba mejor a problemas prácticos. La polémica dividió aún más a los matemáticos británicos y continentales, sin embargo esta separación no fue tan profunda como para que Newton y Leibniz dejaran de intercambiar resultados.




                               Gottfried wilhelm Leibniz
Nació el 1 de julio de 1646 en Leipzig, dos años antes del final de la Guerra de los Treinta Años
El 11 de noviembre de 1675 tuvo lugar un acontecimiento fundamental, ese día empleó por primera vez el cálculo integral para encontrar el área bajo la curva de una función y=f(x). Leibniz introdujo varias notaciones usadas en la actualidad, tal como, por ejemplo, el signo "integral" ∫, que representa una S alargada, derivado del latín "summa", y la letra "d" para referirse a los "diferenciales", del latín "differentia". Esta ingeniosa y sugerente notación para el cálculo es probablemente su legado matemático más perdurable. Leibniz no publicó nada acerca de su Calculus hasta 1684.[10] La regla del producto del cálculo diferencial es aún denominada "regla de Leibniz para la derivación de un producto". Además, el teorema que dice cuándo y cómo diferenciar bajo el símbolo integral, se llama la "regla de Leibniz para la derivación de una integral".

Cecilia Y Kasandra

No hay comentarios:

Publicar un comentario

Seguidores